1	Microsporogenesis of Alfalfa Cultivars and Selected Genotypes
2	M. Dilkova and E.T. Bingham *
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	Dept. of Agronomy, Univ. of Wisconsin, 1575 Linden Dr., Madison, WI 53562. Contribution from the
24	Dept. of Agronomy, Univ. of Wisconsin Agric. Exp. Stn., Wisconsin - Madison. Received.
25	*Corresponding author (ebingham@facstaff.wisc.edu)

Abbreviations: PMCs, pollen mother cells.

ABSTRACT

2 The degree of regularity at each stage of microsporogenesis in alfalfa (2n=4x=32) was 3 studied to understand what is typical in alfalfa cultivars. Materials included 11 'Vernal', four 4 'Arrow', and three 'WISFAL' plants, an elite clone P from 'Blazer XL', and a male sterile clone 5 6-4ms developed from 'Saranac'. Regular meiotic stages predominated in all plants, and they had 6 similar meiotic profiles; however, every plant also had some degree of irregularity. Univalents 7 were observed in about 15% of the PMCs in all plants. The various ways univalents behaved 8 throughout meiosis caused the main irregularities. The basic mechanism producing univalents 9 was disassociation of some multivalents between pachytene and metaphase I. When present at 10 diakinesis there was mainly one ring or chain quadrivalent, and when still present at metaphase I 11 the most common type was either a chain quadrivalent or thrivalent plus the obligatory univalent. 12 Univalents caused irregularities by lying on or off the division plate in metaphase I, dividing 13 precociously or moving to one division pole, or simply remaining at the cell equator at anaphase 14 I. Bivalents occasionally lagged in anaphase I generating subsequent irregularities as well. Rare 15 bridges at anaphase I and anaphase II were interpreted as due to delayed chromatid separation 16 from chromosomes that were either bivalents or univalents in earlier stages. All types of 17 irregularities resulted in tetrads with micronuclei containing microspores, and microspores and 18 pollen grains of varying sizes. Thus, the tetrad stage was a defining stage in terms of degree of 19 meiotic irregularity. Although pollen was a good indicator of male fertility, it was considered 20 less defining because some plants that had lost chromatin in micronuclei had pollen that appeared 21 normal.

INTRODUCTION

2 Cultivated alfalfa Medicago sativa behaves as an autotetraploid (2n=4x=32) (Stanford et 3 al., 1972). The four homologous chromosomes pair mainly as bivalents, with fewer than one 4 quadrivalent per cell on the average in eight independent studies cited by McCoy and Bingham 5 (1988). Tetrasomic genetic ratios (Stanford, 1951; Bingham, 1973; Quiros, 1982) indicates that 6 the bivalent pairing is random and not preferential. Most studies of microsporogenesis in 7 cultivated alfalfa usually described either the early stages of meiosis, or focused on the direct 8 outcomes of tetrads and pollen (Reeves, 1930; Gillies, 1970; Armstrong, 1971; Gillies and 9 Lesins, 1971; Smith and Murphy, 1986). Patterns of irregularity exhibited by the meiotic 10 chromosomes through the duration of the microsporogenesis have been reported (Atwood and 11 Grun, 1951; Grun, 1951), but have not received major attention until now.

¹² 'Vernal' alfalfa was featured in the present study for a number of reasons. Vernal is a ¹³ benchmark cultivar released in 1953 and still on the market. Moreover it is a parent or ¹⁴ grandparent in at least two-thirds of 802 certified varieties released between 1962 and 1998 ¹⁵ (NAAIC, http://naaic.org). *Medicago falcata* from a 2x-4x cross and from 'Cossack' was used in ¹⁶ the development of Vernal (Barnes et al., 1977). The other cultivars used in this study all have ¹⁷ Vernal derivatives in their pedigree and thus have at least a trace of *M. falcata*. A derived ¹⁸ tetraploid *M. falcata*, WISFAL, was also examined.

19 The objective of the present study was to establish a base-line for the degree of meiotic 20 regularity in northern-adapted alfalfa cultivars that have a natural level of fertility. This basic 21 knowledge will be useful in the evaluation of the same materials after cyclic selection for fertility.

MATERIALS AND METHODS

2 Vernal plants used in the study were grown from certified seed and sampled in the year of 3 establishment (Graber, 1956). Thus, natural selection was minimal. The complex pedigree of 4 Vernal is discussed in the introduction. 'Arrow' is a synthetic cultivar the parents of which 5 contained at least 6% Vernal. Methods were the same as for Vernal. The following selected 6 clones and plants were also examined. Clone 'P' of synthetic variety 'Blazer XL' was selected 7 several years ago as outstanding in vigor, self fertility, and self progeny performance. In 8 addition, clone P is heterozygous (duplex) for the cauliflower head-simple leaf trait. The male 9 sterile clone '6-4ms' was obtained from crosses within 'Saranac' alfalfa (Murphy and Lowe, 10 1966) and has been maintained by cuttings for more than 30 years. It is known that it has 11 uniparental transmission of the mitochondrial genome, and biparental transmission of the 12 chloroplast genome (Forsthoefel et al., 1992). 'WISFAL' is tetraploid *M. falcata* developed from 13 several diploid *M. falcata* plant introductions (Bingham, 1990, 1993).

14 Flower buds of 11 Vernal alfalfa plants were collected from spaced plants in the field in 15 August 1995. They were fixed in three parts 95% ethanol : one part glacial acetic acid solution 16 for 24 hours and then were stored in 70% ethanol at room temperature. Cytological smear 17 preparations were made according to standard acetocarmine technique. A minimum of 100 18 pollen mother cells (PMCs) at each stage of meiosis was examined in all 11 Vernal plants. In the 19 other materials fewer than 100 PMCs per stage were sometimes examined, but the total PMCs 20 was more than 100 in all cases. Each type of irregularity was recorded on the basis of PMCs 21 exhibiting it compared to the total number of PMCs examined. Microsporogenesis in Arrow 22 plants, WISFAL plants, and in the selected clones was studied using buds collected in the 23 greenhouse between January and April 1996.

Statistical analysis included computation of means, standard deviations (SD), coefficient of variation (CV), Fisher test for equality of variances (F variances), T-test and multiple t-test for equality of means (T multiple). In addition to that, abnormalities observed through the duration 2 upon Bonferrony procedure.

RESULTS

2 The characteristics of regular stages of microsporogenesis in tetraploid alfalfa from 3 diakinesis to microspores are shown in Figure 1. A complete set of regular stages in tetraploid 4 alfalfa has not been pubished previously. Most PMCs in all plants studied had 16 bivalents at 5 diakinesis (Fig. 1a) and metaphase I (Fig. 1b). Similarly, most PMCs were free of lagging 6 chromosomes and chromosome bridges at anaphase I (Fig. 1c), the division spindles were aligned 7 properly at metaphase II (Fig. 1d), and there were no lagging chromosomes at anaphase II (Fig. 8 Simultaneous cytokinesis following telophase II formed four microspores free of 1e). 9 micronuclei (Fig. 1f).

10 Although regular stages predominated in all materials, essentially every plant also had 11 some degree of irregularity at all stages. Departures from regular meiosis typical for all materials 12 are featured in Fig. 2 and 3. Photomicrographs are based on Vernal plants and are considered 13 representative of the irregularities in other alfalfa tetraploids. At pachytene, it was difficult to 14 trace the behavioral patterns of the chromosomes due to tight chromosome grouping and 15 overlapping, and no quantitative data were collected. Nonetheless, some abnormalities were 16 photographed including less than perfect pairing (Fig. 2a), an apparent translocation (Fig. 2b), 17 and occasional switching of pairing partners (Fig. 2c). In addition, small loops sometimes were 18 observed which may have resulted from a segment deficiency in one of the pairing partners.

19 Diakinesis (Fig. 2d) is also difficult to analyze in alfalfa, but bivalents, quadrivalents, and 20 At metaphase I (Fig. 2e), a chain multivalent of three univalents could be identified. 21 chromosomes accompanied by univalent was common for Vernal plants. A PMC typical of those 22 containing only bivalents and univalents is illustrated in Fig. 2f. Lagging chromosomes at 23 anaphase I (Fig. 2g) were associated with the separation of lagging univalents and bivalents. 24 Univalents that divided precociously at anaphase I (Fig. 2h) did not move toward the cell pole 25 before the second meiotic division started. In that regard, Fig. 3a illustrates chromatin entities 26 positioned off the plate at metaphase II that likely originated from univalents which remained at the cell equator at anaphase I. Bridges at anaphase II (Fig. 3b) were interpreted as due to delayed chromatid separation. Cells with numerous laggards at anaphase II (Fig. 3c) occurred consistently across genotypes. Those laggards accounted for the variation in size of extranuclear chromatin entities at telophase II (Fig. 3d) which proceeded to form micronuclei occurring with tetrads of microspores (Fig. 3e) or contributed to the formation of pollen grains of various sizes (Fig. 3f).

7 A large number of PMCs per plant per stage were analyzed to establish the typical 8 chromosome pairing behavior in alfalfa during first meiotic division from diakinesis to anaphase I 9 (Table 1). The multivalent frequency in all plants tended to decrease from diakinesis to 10 metaphase I. Some quadrivalents became two bivalents, a bivalent and two univalents, or 11 occasionally a trivalent and an univalent, apparently due to insufficient crossing over to maintain 12 the original quadrivalent. At metaphase I, chain and ring quadrivalents were observed at about 13 equal frequencies across plants, but no quantitative data were collected. Within Vernal 14 population, the multivalent frequency ranged from 0.11 to 0.28, and each plant had to be 15 considered individually due to highly significant differences between the variances. The average 16 frequency of multivalents at metaphase I for Arrow and WISFAL populations was 0.14 and 0.16, 17 respectively, that for clone Saranac 6-4ms was 0.27, while in clone Blazer XL-P it was only 0.01. 18 Univalents were recorded in every plant (Table 1) with a range of 0.03 - 0.16 in Vernal, an 19 average of 0.14 in Arrow, 0.17 in WISFAL, 0.07 in clone Blazer XL-P, and a low of 0.02 in clone 20 Saranac 6-4ms. In WISFAL a noticeable correlation r = 0.893, yet not significant at P = 0.05 (r =21 0.970), between frequencies of multivalents at diakinesis and univalents at metaphase I confirmed 22 the relationship between those types of irregularities.

Other irregularities associated with chromosome pairing were lagging bivalents and univalents in anaphase I (Table 1). Lagging bivalents were found in 10% or less of the PMCs of any given plant, while the frequency of lagging univalents was consistently higher with means of 0.17 in Vernal, 0.16 in Arrow, 0.30 in WISFAL, 0.22 in Saranac 6-4ms, and as rare as 0.02 in
 clone Blazer XL-P.

3 Analysis of second meiotic division was in many cases based on an even larger number 4 of PMCs (Table 2) because the second division is easier to analyze. At metaphase II, every PMC 5 could be easily classified for the presence of mispositioned chromosomes. In Vernal their 6 frequency ranged 0.06 - 0.31, in Arrow and WISFAL it was 0.10 and 0.34, respectively, clone 7 Blaser XL-P had an average of 0.06, and clone Saranac 6-4ms had 0.29. At anaphase II, lagging 8 chromosomes again ranged 0.06 - 0.45, predominantly due to the presence of univalents and their 9 erratic behavior at first meiotic division. This interpretation is supported by strong correlation, r 10 = 0.992 at P = 0.05, between the frequency of lagging univalents at anaphase I and mispositioned 11 chromosomes at metaphase II in WISFAL, for example.

12 The frequencies of lagging chromosomes at anaphase II and micronuclei at tetrad stage 13 are similar in each respective plant with the exception of male sterile clone Saranac 6-4ms where 14 the frequency of metaphase irregularities rose sharply, probably due to the onset of male sterility. 15 The frequency of tetrads with micronuclei was as low as 0.06 in Vernal-36 and as high as 0.44 in 16 Vernal-11 (Table 2). In Arrow plants the mean frequency was 0.17, while in WISFAL it was 17 0.29. That difference between the means of the two populations was highly significant, T =18 11.43. Clone Blazer XL-P had a frequency of 0.10, while the male sterile clone Saranac 6-4ms 19 had a high frequency of 0.69. Interestingly, in Arrow and WISFAL populations the correlations 20 between tetrads with micronuclei containing microspores and lagging chromosomes at anaphase 21 II was highly significant at a P = 0.05, r = 0.997 and r = 0.978, respectively.

A graph of the degrees of regularity of microsporogenesis of the various tetraploid alfalfa materials, Fig. 4, provides profiles of the materials but does not establish cultivar differences because of the different sample sizes. Arrow started at 0.75 level of regularity and slightly improved toward the end of meiosis, 0.83, with some frequency fluctuations on the way, between 0.72 and 0.90. WISFAL is tetraploid recently developed from diploid *Medicago falcata* and had the highest frequencies of irregularities at each stage among the materials. Clone BlazerXL-P selected for its excellent reproductive characteristics was the most regular one with recorded frequencies always around the 0.90 mark. Saranac 6-4ms was selected for its stable male sterility, and was as regular as other materials until anaphase II, at which time irregularities increased probably related to the onset of male sterility, and the eventual failure of pollen formation. It was interesting that the overall meiotic behavior of Vernal plants represented by the dotted line, was intermediate to the other plants in the study.

2

3

4

5

6

DISCUSSION

Alfalfa chromosomes are described as short and subtelocentric with 2.26 average arm ratio (Gilles, 1970; Gilles and Lesins, 1971). According to Stanford et al. (1972), these features could limit chiasma formation, especially in the shorter chromosome arm. The disassociation of some quadrivalents between pachytene and metaphase I as reported by Armstrong (1971) and in this study, is evidence of insufficient chiasma formation to maintain quadrivalents. The

disassociation of quadrivalents resulted in mostly bivalents as well as univalents supporting the
conclusion that alfalfa is a bivalent-forming autotetraploid (Stanford et al., 1972; McCoy and
Bingham, 1988). Importantly, univalents also occurred in some meiocytes of every plant.

Atwood and Grun (1951), and Armstrong (1954, 1971) reported multivalent frequencies ranging from 0.21 to 0.89 per cell in plants from cultivars. The same general range was found in this study with an average of 0.29 at diakinesis and 0.16 at metaphase I. Interestingly, this was also the frequency of multivalents observed in colchicine-doubled cultivated diploids (Obajimi and Bingham, 1973). That of the derived tetraploid WISFAL was slightly higher, 0.37, but still in the same range.

16 Univalents appeared to be the principal cause of irregularities throughout the stages of 17 microsporogenesis in alfalfa in this and previous studies by Julen (1944), Atwood and Grun 18 (1951), Grun (1951), Armstrong (1971), and Smith and Murphy (1986). One univalent is always 19 produced when there is insufficient crossover to hold a bivalent together. Our investigations on 20 populations of Vernal and Arrow revealed univalent frequency of about 0.11 at metaphase I and 21 0. 17 at anaphase I. Considering all materials in this study, univalents were observed in about 22 15% of all the PMCs. Results from four Arrow and three WISFAL genotypes also indicated 23 strong correlations between the frequency of PMCs with lagging univalents at anaphase I, 24 mispositioned chromosomes at metaphase II, and lagging chromosomes at anaphase II. 25 Furthermore, for both populations there was a highly significant correlation between the 26 frequency of PMCs with lagging chromosomes at anaphase II and the tetrads containing microspores with micronuclei. A similar pattern was detected in the population of 11 Vernal plants. The tetrad stage was considered more useful than pollen in evaluating regularity of microsporogenesis because some plants that had micronuclei in the tetrad stage went on to produce pollen that appeared normal in size and stainability.

5 A comparison of degree of regularity exhibited throughout microsporogenesis in Vernal, 6 Arrow, WISFAL, and the individual clones Blazer XL-P and Saranac male sterile 6-4ms indicates 7 that they have similar meiotic profiles. However, clone Blazer XL-P which was selected as a 8 very fertile clone was consistently the most regular of all entries in the study. The derived 9 tetraploid nature of WISFAL probably accounted for the high frequency of lagging univalents, 10 and, consequently, the mispositioned chromosomes at metaphase II. Toward the end of 11 microsporogenesis, the PMCs of Saranac male sterile clone 6-4ms were the most irregular, likely 12 reflecting the expression of cytoplasmic male-sterility.

13 Regularity of microsporogenesis in alfalfa appears to be a matter of degree, with even the 14 most regular plant containing occasional univalents and microspores with micronuclei. As 15 discussed by Smith and Murphy (1986), a threshold level of irregularity apparently must be 16 reached before fertility is significantly affected. In the Vernal and Arrow populations, plants with 17 a similar background of meiotic irregularities ranged from nearly self-sterile to quite self-fertile 18 (data not reported). This indicated that genetic factors affecting other fertility parameters had a 19 greater impact on fertility than the range of meiotic regularity observed in this study. Smith and 20 Murphy (1986) suggested that when selection is practiced for improved fertility, meiotic 21 regularity is improved to a much smaller degree. In fact this is what has been observed in an 22 ongoing analysis of the materials in the present study after cycles of selection for improved 23 fertility (Dilkova and Bingham, 2003, unpublished).

What is the impact of univalents and associated irregularities? Aneuploidy is one consequence, and 4 - 5% aneuploidy has been reported in alfalfa over the years (Stanford, 1959;

- 1 Bingham, 1968, and unpublished; and Bauchan et al., 2002). Aneuploidy in turn can mimic
- 2 double reduction (Bingham, 1968), and could exaggerate inbreeding depression.

1	REFERENCES
2	Armstrong, J.M. 1954. Cytological studies in alfalfa polyploids. Can. J. of Botany. 32:531-542.
3	Armstrong, K.C. 1971. Chromosome associations at pachytene and metaphase in Medicago
4	sativa. Can J. Genet. Cytol. 13:697-702.
5	Atwood, S.S., and P. Grun. 1951. Cytogenetics of alfalfa. Bibliogr. Genet. 14. 133-188.
6	Barnes, D.K., E.T. Bingham, R.P. Murphy, O.J. Hunt, D.F. Bread, W.H. Skrdla, and L.R. Tauber.
7	1977. Alfalfa germplasm in the United States: Genetic vulnerability, use, and maintenance.
8	USDA-ARS Bull. 1571. U.S. Government Printing Office, Washington, DC.
9	Bauchan, G.R., T.A. Campbell, and M.A. Hossain. 2002. Chromosomal polymorphism as
10	detected by C-banding patterns in Chilean alfalfa germplasm. Crop Sci. 42:1291-1297.
11	Bingham, E.T. 1968. Aneuploids in seedling populations of tetraploid alfalfa, Medicago sativa L.
12	Crop Sci. 8:571-574.
13	Bingham, E.T. 1973. Interaction of two basic color factor genes in alfalfa. Crop Sci. 13:393-394.
14	Bingham, E.T. 1990. Backcrossing tetraploidy into diploid Medicago falcate L. using 2n eggs.
15	Crop Sci. 30:1353-1354.
16	Bingham, E.T. 1993. Registration of WISFAL alfalfa (Medicago sativa subsp. falcata
17	germplasm derived from diploids. Crop Sci. 33:217.
18	Forsthoefel, N.R., H.J. Bohnert, and S.E. Smith. 1992. Discordant inheritance of mitochondrial
19	and plastid DNA in diverse alfalfa genotypes. J. of Heredity. 83:342-345.
20	Graber, L.F. 1956. Registration of 'Vernal' alfalfa. Agron. J. 48:587.
21	Grun, P. 1951. Variation in the meiosis of alfalfa. Am. J. of Botany. 38:475-482.
22	Gillies, C.B. 1970. Alfalfa chromosomes. II Pachytene karyotype of a tetraploid Medicago
23	sativa L. Crop Sci. 10:172-175.
24	Gillies, C.B., and K. Lesins. 1971. Pachytene chromosome morphology at different ploidy levels
25	in Medicago. Heredity 26:486-490.
26	Julen, G. 1944. Investigations on diploid, triploid and tetraploid lucerne. Hereditas 30:567-582.

2	Alfalfa Improvement. Hanson, Hill and Barnes (eds.). Amer. Soc. Agronomy, Madison, WI.
3	p. 737-776.
4	Murphy, R.P., and C.C. Lowe. 1966. Registration of 'Saranac' alfalfa. Crop Sci. 6:104-107.
5	Obajimi, A.O., and E.T. Bingham. 1973. Inbreeding cultivated alfalfa in one tetraploid-haploid-
6	tetraploid cycle: Effects on morphology, fertility, and cytology. Crop Sci. 13:36-39.
7	Quiros, C.F. 1982. Tetrasomic segregation for multiple alleles in alfalfa. Genetics 101:117-127.
8	Reeves, R.G. 1930. Nuclear and cytoplasmic division in the micro-sporogenesis of alfalfa. Am.
9	J. of Botany. 17:29-42.
10	Smith, S.E. and R.P. Murphy 1986. Relationships between inbreeding, meiotic irregularity, and
11	fertility in alfalfa. Can. J. Genet. Cytol. 28:130-137.
12	Stanford, E.H. 1951. Tetrasomic inheritance in alfalfa. Agron. J. 43:222-225.
13	Stanford, E.H. 1959. The use of chromosome deficient plants in cytogenetic analysis of alfalfa.
14	Agron. J. 8:470-472.
15	Stanford, E.H., W.M. Clement, Jr., and E.T. Bingham. 1972. Cytology and evolution of the
16	Medicago sativa-falcata complex. In: Alfalfa Science and Technology. Hanson, Hill and
17	Barnes (eds.). Amer. Soc. Agronomy, Madison, WI. p. 87-101.

McCoy, T.J., and E.T. Bingham. 1988. Cytology and cytogenetics of alfalfa. In: Alfalfa and

1

- Table 1. Chromosome pairing irregularities and their average frequency during first division of
 meiosis in PMCs from 11 Vernal plants, four Arrow plants, clone Blazer XL-P, male sterile
- 3 Saranac clone 6-4ms, and three WISFAL plants.

Plant ID	PMCs †	Diakinesis	Metapl	hase I	Anap	ohase I
	in Meiosis I	Multivalents	Multivalents	Univalents	Lagging bivalents	Lagging univalents
Vernal- 4	336	0 29	0 19	0.07	0.08	0.09
Vernal- 7	324	0.36	0.14	0.11	0.09	0.16
Vernal-11	411	0.30	0.13	0.09	0.06	0.21
Vernal-18	332	0.37	0.25	0.07	0.06	0.24
Vernal-20	348	0.34	0.11	0.16	0.08	0.20
Vernal-27	467	0.35	0.24	0.03	0.06	0.15
Vernal-36	343	0.31	0.16	0.10	0.03	0.12
Vernal-41	397	0.33	0.12	0.05	0.04	0.19
Vernal-43	484	0.36	0.20	0.07	0.01	0.25
Vernal-45	326	0.30	0.10	0.05	0.005	0.11
Vernal-46	342	0.49	0.28	0.07	0.07	0.18
Mean		0.34	0.17	0.08	0.04	0.17
F variances ‡		2.86**	4.05***	2.22*	1.46	1.09
T multiple §		-	-	-	0.38	0.42
Arrow-1	298	0.25	0.19	0.09	0.00	0.12
Arrow- 6	230	0.19	0.13	0.12	0.02	0.19
Arrow-18	135	0.26	0.10	0.20	0.04	0.17
Arrow-24	150	0.30	0.14	0.13	0.00	0.15
Mean		0.25	0.14	0.14	0.01	0.16
F variances		1.00	1.93	2.88	0.81	0.33
T multiple		0.57	0.51	0.70	1.08	0.49
Blazer XL-P	507	0.16	0.01	0.07	0.00	0.02
SD¶	001	0.01	0.01	0.04	0.00	0.02
CV #		0.06	1.00	0.57	0.00	1.00
Saranac 6-4ms	123	0.38	0.27	0.02	0.00	0 22
SD SD	125	0.13	0.09	0.02	0.00	0.12
CV		0.34	0.33	1.00	0.00	0.55
WISFAL-1	237	0.43	0.16	0.20	0 14	0.37
WISFAL-2	228	0.32	0.21	0.12	0.10	0.23
WISFAL-6	174	0.36	0.10	0.12	0.05	0.29
Mean		0.37	0.16	0.17	0.10	0.30
F variances		1.08	0.55	0.68	2 10	1 01
T multiple		0.80	0.23	0.33	1.07	0.50

- 1 * Evidence of significant differences at probability level P = 0.05.
- 2 ** Evidence of significant differences at probability level P = 0.01.
- 3 *** Evidence of significant differences at probability level P = 0.001.
- 4 † PMCs, number of examined pollen mother cells.
- 5 ‡ F variances, Fisher test for equality of variances.
- 6 § T multiple, multiple t-test for equality of means.
- 7 ¶ SD, standard deviation.
- 8 # CV, coefficient of variation.

Table 2. Chromosome irregularities and their frequencies during second division of meiosis in
 PMCs from 11 Vernal plants, four Arrow plants, clone Blazer XL-P, male sterile Saranac
 clone 6-4ms, and three WISFAL plants.

Plant ID	PMCs †	Metaphase II	Anaphase II	Tetrads
	in	Mispositioned	Lagging	Micronuclei
-	Meiosis II	chromosomes	chromosomes	
Vernal- 4	477	0.12	0.22	0.16
Vernal- 7	436	0.25	0.25	0.19
Vernal-11	487	0.31	0.45	0.44
Vernal-18	363	0.29	0.25	0.20
Vernal-20	416	0.22	0.37	0.31
Vernal-27	414	0.23	0.15	0.17
Vernal-36	390	0.09	0.15	0.06
Vernal-41	437	0.21	0.20	0.16
Vernal-43	416	0.16	0.16	0.19
Vernal-45	433	0.06	0.09	0.10
Vernal-46	406	0.20	0.14	0.08
Maan		0.20	0.22	0.10
E vorionaas *		5 20***	0.22	0.19
r variances 4		5.52	14.50***	20.85
Arrow-1	334	0.05	0.15	0.23
Arrow- 6	348	0.21	0.17	0.17
Arrow-18	254	0.08	0.18	0.16
Arrow-24	150	0.10	0.22	0.12
Mean		0.10	0.18	0.17
F variances		1.96	0.18	0.60
T multiple §		1.13	0.10	0.27
PlazerVI D	772	0.06	0.10	0.10
SD ¶	112	0.00	0.10	0.02
SD CV #		1.00	0.40	0.02
C V #		1.00	0.40	0.20
Saranac 6-4ms	284	0.29	0.54	0.69
SD		0.01	0.11	0.04
CV		0.03	0.20	0.06
WISFAL-1	258	0.42	0.32	0.29
WISFAL-2	230	0.72	0.45	0.32
WISFAL-6	390	0.33	0.25	0.25
Mean		0.34	0.34	0.29
F variances		4.49	4.24	3.23
T multiple		1.65	0.98	0.99

- 1 *** Evidence of significant differences at probability level P = 0.001.
- 2 † PMCs, number of examined pollen mother cells.
- 3 ‡ F variances, Fisher test for equality of variances.
- 4 § T multiple, multiple t-test for equality of means.
- 5 ¶ SD, standard deviation.
- 6 # CV, coefficient of variation.

Fig. 1. Regular meiosis in PMCs from cultivar Vernal: a. Late prophase showing 16 bivalents
 (Vernal-18); b. Metaphase I (Vernal-41); c. Late anaphase I (Vernal-46); d. Metaphase II
 (Vernal-43); e. Anaphase II (Vernal-27); f. Association of four microspores (Vernal-43);
 (100/1.32).

1	Fig. 2. First meiotic division in PMCs from cultivar Vernal featuring various patterns of
2	chromosome pairing: a. Pachytene chromosomes with a less than perfect pairing, arrow
3	(Vernal-20); b. Pachytene chromosomes involved in an apparent translocation, arrow (Vernal-
4	20); c. Pachytene chromosomes engaged in a double nonhomologous arm exchange, arrow
5	(Vernal-7); d. Late prophase chromosomes, bivalent and quadrivalent associations, arrow
6	(Vernal-11); e. Metaphase I with multivalent and univalent (Vernal-7); f. Early metaphase I
7	with two univalents (Vernal-43); g. Late anaphase I with multiple laggards undergoing delayed
8	division (Vernal-20); h. Telophase I with univalents remaining at the cell equator (Vernal-4);
9	(100/1.32).

1	Fig. 3. Second meiotic division irregularities in PMCs from cultivar Vernal: a. Metaphase II
2	with chromosomes positioned distantly of the metaphase plate, arrows (Vernal-43); b.
3	Anaphase II with a chromosomal bridge (Vernal-20); c. Late anaphase II with numerous
4	laggards (Vernal-11); d. Late telophase II with laggards associated in a separate chromatin
5	body, arrow (Vernal-43); e. Microspores of various sizes and a micronucleus, arrow (Vernal-
6	7); f. Pollen grains of heterogeneous size and stainability (Vernal-18); (100/1.32).

Fig. 4. Meiotic profiles of populations of Arrow and WISFAL plants, and clones Blazer XL-P
 and male sterile Saranac 6-4ms based on data from PMCs with regularly progressing division.
 The dotted line features a generalized profile of cultivar Vernal, where the variation among
 individual plants was significant.